An approach to estimate peak discharges of historic floods is presented. Numerous historic flood levels are handied down by documents and water level marks on buildings. To make use of this flood level information nowadays, the water level must be transferred into discharge by considering channel and floodplain modifications since historic times.

Flood related to ice jams are excluded due to different hydraulics.

Numerous historic flood levels are handed down by documents and water level marks on buildings. To make use of this flood level information nowadays, the water level must be transferred into discharge by considering channel and floodplain modifications since historic times.

In historic times, the city fortifications existed at Prague. Its topography can be derived from historic descriptions or analogues to modern conditions.

Historic paintings, etchings and descriptions provide information on landuse characteristics of the analysed cross-section area as main parameter of hydraulic conditions throughout time.

The reconstruction of cross-section area A is based on bathymetric maps, archaeological studies as well as etchings and paintings from historic times.

The topography is reconstructed by modern maps considering accumulation and erosion, floodplain and embedded channels, due to uncertainties and variations during different seasons.

The hydraulic radius \(R \) is derived from historic descriptions or analogues to modern conditions.

The peak discharge of recent flood events is calculated for model calibration by the documented approach and compared with gauge data.

The floodplain and embedded channels, due to uncertainties and variations during different seasons.

The hydraulic radius \(R \) is derived from historic descriptions or analogues to modern conditions.

The peak discharge of recent flood events is calculated for model calibration by the documented approach and compared with gauge data.

The floodplain and embedded channels, due to uncertainties and variations during different seasons.

The hydraulic radius \(R \) is derived from historic descriptions or analogues to modern conditions.

The peak discharge of recent flood events is calculated for model calibration by the documented approach and compared with gauge data.

The floodplain and embedded channels, due to uncertainties and variations during different seasons.

The hydraulic radius \(R \) is derived from historic descriptions or analogues to modern conditions.

The peak discharge of recent flood events is calculated for model calibration by the documented approach and compared with gauge data.

The floodplain and embedded channels, due to uncertainties and variations during different seasons.

The hydraulic radius \(R \) is derived from historic descriptions or analogues to modern conditions.

The peak discharge of recent flood events is calculated for model calibration by the documented approach and compared with gauge data.

The floodplain and embedded channels, due to uncertainties and variations during different seasons.

The hydraulic radius \(R \) is derived from historic descriptions or analogues to modern conditions.

The peak discharge of recent flood events is calculated for model calibration by the documented approach and compared with gauge data.

The floodplain and embedded channels, due to uncertainties and variations during different seasons.

The hydraulic radius \(R \) is derived from historic descriptions or analogues to modern conditions.

The peak discharge of recent flood events is calculated for model calibration by the documented approach and compared with gauge data.

The floodplain and embedded channels, due to uncertainties and variations during different seasons.

The hydraulic radius \(R \) is derived from historic descriptions or analogues to modern conditions.

The peak discharge of recent flood events is calculated for model calibration by the documented approach and compared with gauge data.

The floodplain and embedded channels, due to uncertainties and variations during different seasons.

The hydraulic radius \(R \) is derived from historic descriptions or analogues to modern conditions.

The peak discharge of recent flood events is calculated for model calibration by the documented approach and compared with gauge data.

The floodplain and embedded channels, due to uncertainties and variations during different seasons.

The hydraulic radius \(R \) is derived from historic descriptions or analogues to modern conditions.

The peak discharge of recent flood events is calculated for model calibration by the documented approach and compared with gauge data.

The floodplain and embedded channels, due to uncertainties and variations during different seasons.

The hydraulic radius \(R \) is derived from historic descriptions or analogues to modern conditions.

The peak discharge of recent flood events is calculated for model calibration by the documented approach and compared with gauge data.